
Arduino 

Microcontrollers 

By Norm Berls 



Back in the day 

 Arduino invented in 2005 

 Art students at the Interaction Design Institute 

Ivrea in Ivrea, Italy, needed controller for 

kinetic art 

 Invention worked so well, they went into the 

digital controller business 

 Open Source – design is public and anyone 

can copy… and do they ever 

 Many enhancements since then 

 Arduino brought electrical engineering down 

to the level of the hobbyist 



A Microcontroller 

 More than an on/off 

switch. 

 Less than a computer 

 Programmable: you must 

write a program. 

 About the size of a credit 

card. 

 Usually small project or 

hobby applications. 

 Possibly limited CNC. 

 



How It Works 
 Hook up your choice of electronic devices to the 

Arduino board. 

 You can buy devices ready made for Arduino 

 You can wire components together on a solderless 
breadboard and connect to Arduino 

 Connect the Arduino to a USB port on a PC 

 Write an Arduino program with a special program on 
the PC and download it into the Arduino. 

 Your program will immediately begin to execute and 
keep on executing, and executing… 

 Disconnect the Arduino from the PC 

 Connect a battery up to the Arduino 

 The Arduino will remember the last program you 
loaded and will immediately execute it when you 
turn the battery power on 

 Your program will only stop executing when the 
power is turned off to the Arduino 



You gotta have 

 PC  

 Windows, IOS, Linux 

 Multimeter 

 Soldering Iron 



You gotta know 

something about 

 PCs and the Internet 

 Programming (C, C++) 

 Electronics 

 Arduinos 



Arduino Devices and Features 



A Connected 

Microcontroller 

 Connects to electronic 
components: 

 Switch 

 Resistor 

 Capacitor 

 Diode 

 Transistor 

 LED (Light Emitting Diode) 

 Solenoid 

 Relay 

 Potentiometer 

 IC chip 



Fancy Sensor 

 Connections 

 Sensors:  
 Heat (IR) 

 Humidity 

 CO2 

 Contact 
 Proximity 

 Tilt (gyroscope) 

 Motion (inertia) 

 Light 
 Sound 

 Key Pad 

 Real Time Clock 

 GPS 

 
 

 



Sensor Input 

 Sensor input comes in the form of variable: 

 Voltage 

 Resistance 

 Capacitance 



Fancy Graphical 

Connections 1 

 LCD – Liquid 

Crystal Display 

 2 colors 

 2 X 16 most 

common 

 4 X 20 

available 

 Count those 

connections! 

 

 



Fancy Graphical 

 Connections 2 

 TFT  

 Thin Film Transistor 

 Color Graphics 

 Choice of fonts. 

 Fast way to use 

up Arduino IO 

pins 

 SPI serial bus 

requires just 2 

pins 

 

 



Fancy Graphical 

Connections 3 

 TFT (Color) 

 Touch sensitive 

 Are we all 

thinking DRO? 

 

 

 

 



Inductance Anyone?  

 

 



Mostly DC Motors,  

if you please. 

 W and WO brushes 

 Arduino powered by 
computer 

 Motor powered by 
battery or other 
external power source 

 Arduino controls 
motor or additional 
motor controller. 

 Faster/Slower 

 Forward/Backward 

 Contact sensors for 
precise control. 

 



Stepper Motors 

 Arduino 

 Breadboard 

 Controller 

 24V, 10A power 

supply 

 Stepper Motor  

 NEMA 34 

 5.5 A, 132 W 

 40 in-lb 

 0.179 HP 

 180 rotation 



Servo Motors 

 Most examples 

involve only small 

motors. 

 Feedback allows 

precise control and 

checking. 



No Way, Jose 

 At least a 

transistor 

 Maybe a relay 

 Maybe a 

controller 

 Any motor 

pulling over 1 A 

is going to 

need a heat 

sink or fan on 

the Arduino 

side 



About CNC 
 

 gShield by Synthetos touted as the CNC solution 

 Works on Arduino Uno… the smallest Arduino 

 Apparent compatibility problems with Mega 

 GRBL-Arduino-Library needed – a G-code 

interpreter (subset only) 

 2.5 Amps per winding 

 12-30 Input Voltage 

 TI DRV8818 Stepper Drivers 



Micro SD 
 Instead of cramming all 

your data into memory at 

once 

 Non-volatile memory card 

 Megabytes 16, 32 

 Read/Write 

 M codes 

 G codes 

 Limited CNC instruction set 

 Or data collection… 

weather station,  jogger 

mileage 



Communications 

 Various Serial Ports (Standard, SPI, I2C) 

 USB 

 Ethernet 

 WiFi 

 Blue Tooth 

 RFID 



Insanity works better on 

Arduino 



Harass the Cat 



3D Printer… $800 



Millie? 



Incoming!!! 

 Motion shield 

 Gyroscope shield 

 Altitude shield 

 GPS Shield 

You still have to know 

how to pilot a plane 

and navigate 

through cross winds 



DIY DRO 



The Devilish Details 

or 

What It Is 



Geography 

 USB plug for program 
development 

 Program stays in Arduino 
even when power is off. 

 7-12 V power plug 

 40 uA per pin, 200 uA 
total 

 Reset Button 

 Timing crystal 

 Digital IO pins 

 Analog Input pins 

 Power & Ground pins 

 Serial Ports 

 Some digital pins double 
as analog output (PWM) 
Pulse Width Modulation. 



Stacking 

 Add on boards are 

called Shields 

 Shields are designed for 

stacking 

 Pins pass through from 

board to board 

 Pins cannot be reused 

 Lack of clearance can 

cause short circuits 

 Shield conflicts can arise 

when two shields want to 

use the same IO pin 



Add More Pins 

 Uno 
 5.5 volts 

 4 KB flash memory 

 14 pins 

 8 bit addresses 

 Mega 2560 R3 
 5.5 volts 

 256 KB flash memory 

 66 pins 

 8 bit addresses 

 Due 
 3.3 volts 

 512 KB flash memory 

 66 pins 

 32 bit addresses 

 



DIY Shield 

 Prototype on 

breadboard 

 Move to prototype 

shield 

 Solder in place 

 Add it to the stack 



When an Arduino  

gets Bored 

 It talks to itself 

 Arduinos can talk to 
each other through 
the I2C serial bus. 

 When you run out of 
IO pins, you split the 
work onto multiple 
Arduinos 

 One Arduino is the 
master 

 The others are slaves 



Versioning  

Dilemmas 

 Most shields that are compatible with Uno will 

work on Mega. 

 Many versions of Arduino are now obsolete 

and no longer made.  Compatibility? 

 Pin assignment and functionality can change 

between versions. 

 Voltage can be a compatibility issue for 

shields. 



Digital IO 

WRT the Uno and the Mega 

 +5 volts is considered the input voltage 

 0 volts is the ground. 

 +5 volts is the “HIGH” setting or digital 1 

 0 volts is the “LOW” setting or digital 0 

 Any digital pin can be declared as input or 

output, but not both. 



Analog Input 

 Arduino has certain designated pins for analog 

input named A0, A1, A2, A3….. 

 “analogRead” method returns integer values 

between 0 and 1023 

 input = analogRead(A0); 

 “constrain” method clips analog values to fit in a 

certain range 

 input = constrain(analogRead(A0),250,750); 

 “map” method scales analog values from one 

range to another range 

 Input = map(analogRead(A0),0,1023,0,255); 



Pulse Width 

Modulation or 

Analog Output 
 PWM output is done via 

specially designated 

digital pins 

 It is really on/off digital 

output but, the 

duration is precisely 

controlled in a “duty 

cycle” 

 Used to control motors 

by creating the illusion 

of variable voltage 



Serial IO 

 One bit at a time, one after the other 

 Standard Serial 

 SPI serial bus (2 wires) send, receive 

 I2C serial bus (2 wires) send-receive, timer 

 Specialized libraries needed to support 

serial IO 

 You can have a several devices working 

off the same I2C serial bus because each 

one has to have a unique address. 



Programming the Arduino 



Bits and Bytes 

 Arduino calls a program a “sketch” 

 Arduino language is based on C 

 Some C++ mixed in 

 Libraries – special program functions written for 
use with Arduino… extensions to the Arduino 
language 

 Libraries and Shields go together 

 If you need a library, copy from Internet and 
install 

 Sketches are written with the Arduino IDE 
(Integrated Development Environment) 

 IDE is a Java-based program that runs on a PC 

 Download the IDE off the Internet… for free! 



How much C? 

 Floating point numbers and arithmetic 

 Trig functions etc. 

 Logic 
 If, Else 

 Case 

 Comparison operators < > == != 
 And, Or  &&  || 

 Loops 
 While 

 Indexed 

 Dynamic memory allocation 

 Arrays 

 Text strings 

 



Beyond C 

 Arduino supports events 

 You can write your own libraries… if you 

know C++ 

 The Arduino IDE is written in Java 



The IDE  

What to do with it? 

 Integrated Development Environment – a program for 
the PC that lets you write Arduino sketches. 

 https://www.arduino.cc/en/Main/Software 

 Or just search for “Arduino IDE” 

 Download and install 

 Run an “A” cable from a USB port to the connector 
on the Arduino board. 

 Tell the IDE which COM port your are connecting with. 

 Tell the IDE which kind of Arduino board you are 
plugged into.  Different boards have different chips 
and hence speak different versions of the Arduino 
language 

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software


The Arduino IDE 



IDE Tools Menu 

 Pulled down the 

tools menu 

 Board option 

controls board type 

 Port option controls 

which COM port the 

Arduino board is 

connected to 

 Remember, this is a 

USB port 



IDE Load 

 Open an existing 
sketch 

 Menu will show 
example  sketches 
of how Arduino 
interacts with 
various devices. 

 First menu item 
brings up list of 
sketches you have 
saved. 



IDE Edit  

 Sketch “traffic_light_1” 
has been loaded. 

 Slider allows scroll to 
bottom of sketch. 

 Cursor can be placed 
anywhere in sketch. 

 Typing enters new text 
or replaces old 

 Enter creates a new 
line 

 Copy to clipboard 
and paste will work 



IDE Compile 

 Clicked on the 
check icon 

 Sketch compiled 
without error 

 Note “Done 
compiling” message 

 Compiling means 
translating program 
text into the 
machine language 
of the Arduino chip 

 The compile option 
will report any syntax 
errors in your code 

 



IDE Load/Run 

 Note that load 

icon is highlighted 

 This option 

compiles the 

sketch and loads it 

to the Arduino 

 Then the sketch 

immediately starts 

to run on the 

Arduino 



IDE Load/Run 

 Note “Done uploading” 
message 

 The sketch has been 
loaded to the Arduino 
and is running 

 Clicked on the serial 
output icon 

 This sketch contains 
instructions to write 
messages to the standard 
serial port. 

 Clicking the serial icon 
makes the serial port 
output visible in a 
window. 

 This only happens under 
the IDE. 



IDE Serial Output 



IDE Save 

 Clicked on the 

save icon 

 Sketch was saved 

to disk 



traffic_light_1  

Arduino Sketch 
int gg = 6; 

int yy = 2; 

int ss = 6; 

 

void setup() 

{ 

  Serial.begin(9600); 

  pinMode(10, OUTPUT); 

  pinMode(11, OUTPUT); 

  pinMode(12, OUTPUT); 

  digitalWrite(10, LOW); 

  digitalWrite(11, LOW); 

  digitalWrite(12, LOW); 

} 

 

void loop() 

{ 

  golight(gg); 

  yieldlight(yy); 

  stoplight(ss); 

} 

void stoplight(int time) 

{ 

  digitalWrite(10, LOW); 

  digitalWrite(11, LOW); 

  digitalWrite(12, HIGH); 

  Serial.println("Light mode: Stop"); 

  delay(time * 1000); 

} 

void yieldlight(int time) 

{ 

  digitalWrite(10, LOW); 

  digitalWrite(11, HIGH); 

  digitalWrite(12, LOW); 

  Serial.println("Light mode: Yield"); 

  delay(time * 1000);  

} 

void golight(int time) 

{ 

  digitalWrite(10, HIGH); 

  digitalWrite(11, LOW); 

  digitalWrite(12, LOW); 

  Serial.println("Light mode: Go -"); 

  delay(time * 1000);  

} 
 



Electronics 



Watt Amp, Volt? 

 Keep track of which side of any device has the 

most + voltage 

 A multimeter with automatic scaling is a good 

tool for isolating circuit problems 

 Most every device will have some amount of 

voltage across it 

 A device with no measurable voltage across it is 

suspect 



Getting Zapped 

 Some devices are sensitive to 
polarity 

 LEDs have a long wire and a 
short wire.  The long wire must 
connect to the + input or the 
LED will not light. 

 Arduino outputs +5 V at 40 uA.  
This is enough to burn out a 
micro LED.  1000 Ohm resistor in 
series with the LED is necessary 
to keep LED from burning out. 

 Some capacitors will explode if 
connected to the wrong 
polarity. 

 



iPhone App 

 Motors are confusing 

 Amps x Volts = Watts 

 How many HP? 

 iPhone app “Units Plus” 

does units conversions 

 Including power 

 Watts  HP 



iPhone App 

 Color band codes on 

resistors are 

troublesome 

 iPhone app “Resistor” 

converts colors to 

Ohms 

 Does both 4 band 

and 5 band resistors. 



Arduino School 



Books & Books 

 

 

 

Title Author 

Sams Teach Yourself 

Arduino Programming in 

24 Hours 

Richard Blum 

Arduino for Dummies John Nussey 

Arduino Projects for Dummies Brock Craft 

Make: Electronics Charles Platt 

Make: Arduino Bots and Gadgets Kimmo Karvinen 

Tero Karvinen 

Programming Arduino 

Next Steps 

Simon Monk 



Tutorial Websites 

Name URL 

Arduino www.arduino.cc 

Learn Arduino learn.adafruit.com/category/learn-arduino 

Arduino Tutorial http://www.ladyada.net/learn/arduino/ 

Sparkfun learn.sparkfun.com/tutorials/tags/arduino?page=all 

YouTube www.youtube.com 



Price Comparison 

Merchant Price Arduino Uno R3 

Adafruit $24.95 

Amazon $15.67 

Arduino Store, USA $24.95 

Sparkfun $24.95 

Ebay $ 3.95 

Sain Smart $ 8.89 

Radioshack $34.99 

GearBest $10.99 

Micro Center $  9.99 



Raspberry Pi 
 A computer and not a 

controller 

 Megabytes of memory 

 Connections to keyboard 
and mouse 

 Much faster than an 
Arduino 

 Connections to peripheral 
sensors and actuators 
generally more difficult 

 Programming in Python 

 Runs Linux OS 

 Raspberry Pi and Arduino 
can talk to each other 
through the I2C serial bus 

 

 



Future Project 

 Real time clock 

 Westminster chimes 

 Components 

 Tubular wind chimes 

 Real time shield 

 TFT shield for time/date  

 Key pad shield 

 Solenoids 

 LCD shield for reset 

 On/off switch for chimes 

 Arduinos 



The End 


